Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;16(2):149-69.
doi: 10.1016/s0933-3657(98)00070-0.

Obtaining interpretable fuzzy classification rules from medical data

Affiliations

Obtaining interpretable fuzzy classification rules from medical data

D Nauck et al. Artif Intell Med. 1999 Jun.

Abstract

For many application problems classifiers can be used to support a decision making process. In some domains-in areas like medicine especially-it is preferable not to use black box approaches. The user should be able to understand the classifier and to evaluate its results. Fuzzy rule based classifiers are especially suitable, because they consist of simple linguistically interpretable rules and do not have some of the drawbacks of symbolic or crisp rule based classifiers. Classifiers must often be created from data by a learning process, because there is not enough expert knowledge to determine their parameters completely. A simple and convenient way to learn fuzzy classifiers from data is provided by neuro-fuzzy approaches. In this paper we discuss extensions to the learning algorithms of neuro-fuzzy classification (NEFCLASS), a neuro-fuzzy approach for data analysis that we have presented before. We present interactive strategies for pruning rules and variables from a trained classifier to enhance its readability, and demonstrate our approach on a small example.

PubMed Disclaimer

Publication types

LinkOut - more resources