Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun 11;97(6):689-701.
doi: 10.1016/s0092-8674(00)80782-5.

Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2

Affiliations
Free article

Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2

M Trommsdorff et al. Cell. .
Free article

Abstract

Layering of neurons in the cerebral cortex and cerebellum requires Reelin, an extracellular matrix protein, and mammalian Disabled (mDab1), a cytosolic protein that activates tyrosine kinases. Here, we report the requirement for two other proteins, cell surface receptors termed very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). Both receptors can bind mDab1 on their cytoplasmic tails and are expressed in cortical and cerebellar layers adjacent to layers that express Reelin. mDab1 expression is upregulated in knockout mice that lack both VLDLR and ApoER2. Inversion of cortical layers and absence of cerebellar foliation in these animals precisely mimic the phenotype of mice lacking Reelin or mDab1. These findings suggest that VLDLR and ApoER2 participate in transmitting the extracellular Reelin signal to intracellular signaling processes initiated by mDab1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms