Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul;290(1):266-75.

Dual pharmacological properties of a cyclic AMP-sensitive potassium channel

Affiliations
  • PMID: 10381786

Dual pharmacological properties of a cyclic AMP-sensitive potassium channel

J C Gomora et al. J Pharmacol Exp Ther. 1999 Jul.

Abstract

Bovine adrenal zona fasciculata cells express a novel K+ current (IAC) that sets the resting potential while it couples adrenocorticotropin and angiotensin II receptors to membrane depolarization and cortisol secretion. IAC is distinctive among K+ channels both in its activation by ATP and its inhibition by cyclic AMP. Whole-cell and single-channel patch-clamp recording was used to establish a pharmacological profile of IAC K+ channels. IAC was blocked by antagonists of cyclic nucleotide-gated channels, including the diphenylbutylpiperidine (DPBP) antipsychotic pimozide and l-cis-diltiazem. Other DPBPs, including penfluridol and fluspirilene, also potently inhibited this channel. The inhibition of IAC by DPBPs was selective because 200-fold higher concentrations of penfluridol were required to inhibit voltage-gated IA K+ channels in adrenal zona fasciculata cells. Standard K+ channel antagonists blocked IAC at concentrations 100- to 100,000-fold higher than the DPBPs. IAC channels were also inhibited by the sulfonylureas glyburide and tolbutamide but at concentrations higher than those that typically block ATP-sensitive inward rectifier K+ channels. Overall, the relative order of potency and associated IC50 values for IAC antagonists were as follows: penfluridol (0.187 microM) > fluspirilene (0.232 microM) > pimozide (0.354 microM) >> l-cis-diltiazem (24.9 microM) approximately quinidine (24.1 microM) > bupivacaine (113.2 microM) > tolbutamide (784.4 microM) > BaCl2 (1027 microM) > 4-aminopyridine (2750 microM) > tetraethylammonium (24,270 microM). IAC channels are unique in combining the pharmacological properties of K+-selective channels with those of cyclic nucleotide-gated cation channels. The potent block of IAC channels identifies DPBPs as a new class of K+ channel antagonists and suggests additional targets for these neuroleptics in the central nervous system.

PubMed Disclaimer

Publication types

MeSH terms