Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations
- PMID: 10382307
- DOI: 10.1023/a:1008334930603
Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations
Abstract
The selective and extensive 13C labeling of mostly hydrophobic amino acid residues in a 25 kDa membrane protein, the colicin Ia channel domain, is reported. The novel 13C labeling approach takes advantage of the amino acid biosynthetic pathways in bacteria and suppresses the synthesis of the amino acid products of the citric acid cycle. The selectivity and extensiveness of labeling significantly simplify the solid-state NMR spectra, reduce line broadening, and should permit the simultaneous measurement of multiple structural constraints. We show the assignment of most 13C resonances to specific amino acid types based on the characteristic chemical shifts, the 13C labeling pattern, and the amino acid composition of the protein. The assignment is partly confirmed by a 2D homonuclear double-quantum-filter experiment under magic-angle spinning. The high sensitivity and spectral resolution attained with this 13C-labeling protocol, which is termed TEASE for ten-amino acid selective and extensive labeling, are demonstrated.
Similar articles
-
Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.J Am Chem Soc. 2005 May 4;127(17):6402-8. doi: 10.1021/ja0433121. J Am Chem Soc. 2005. PMID: 15853348
-
Resonance assignment of 13C/15N labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR.J Biomol NMR. 1999 Sep;15(1):1-14. doi: 10.1023/a:1008334204412. J Biomol NMR. 1999. PMID: 10549131
-
Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins.J Biomol NMR. 2009 Aug;44(4):245-60. doi: 10.1007/s10858-009-9338-7. Epub 2009 Jul 17. J Biomol NMR. 2009. PMID: 19609683
-
Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy.J Biomol NMR. 2018 Jul;71(3):141-150. doi: 10.1007/s10858-017-0156-z. Epub 2017 Dec 2. J Biomol NMR. 2018. PMID: 29197975 Review.
-
Site-selective labeling strategies for screening by NMR.Comb Chem High Throughput Screen. 2002 Dec;5(8):623-30. doi: 10.2174/1386207023329978. Comb Chem High Throughput Screen. 2002. PMID: 12470259 Review.
Cited by
-
Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance.J Chem Phys. 2012 Sep 14;137(10):104201. doi: 10.1063/1.4749258. J Chem Phys. 2012. PMID: 22979851 Free PMC article.
-
The influenza m2 cytoplasmic tail changes the proton-exchange equilibria and the backbone conformation of the transmembrane histidine residue to facilitate proton conduction.J Am Chem Soc. 2015 May 13;137(18):6067-77. doi: 10.1021/jacs.5b02510. Epub 2015 Apr 30. J Am Chem Soc. 2015. PMID: 25892574 Free PMC article.
-
Triple resonance experiments for aligned sample solid-state NMR of (13)C and (15)N labeled proteins.J Magn Reson. 2007 May;186(1):51-64. doi: 10.1016/j.jmr.2007.01.014. Epub 2007 Jan 24. J Magn Reson. 2007. PMID: 17293139 Free PMC article.
-
Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains.Cell. 2017 Oct 19;171(3):615-627.e16. doi: 10.1016/j.cell.2017.08.048. Epub 2017 Sep 21. Cell. 2017. PMID: 28942918 Free PMC article.
-
Secondary structure in the core of amyloid fibrils formed from human β₂m and its truncated variant ΔN6.J Am Chem Soc. 2014 Apr 30;136(17):6313-25. doi: 10.1021/ja4126092. Epub 2014 Apr 16. J Am Chem Soc. 2014. PMID: 24679070 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources