Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul 2;274(27):19429-33.
doi: 10.1074/jbc.274.27.19429.

Genetic deficiency of acylation stimulating protein (ASP(C3ades-Arg)) does not cause hyperapobetalipoproteinemia in mice

Affiliations
Free article

Genetic deficiency of acylation stimulating protein (ASP(C3ades-Arg)) does not cause hyperapobetalipoproteinemia in mice

R A Wetsel et al. J Biol Chem. .
Free article

Abstract

The acylation stimulating protein (ASP) is a 76-amino acid peptide that has been proposed as a potent mediator of triglyceride synthesis and, when functionally impaired, as a major cause of hyperapobetalipoproteinemia (HyperapoB). Purification and sequence analysis of ASP from human sera have revealed that ASP is identical to the complement C3-derived activation peptide C3ades-Arg. Because C3 is the precursor for C3ades-Arg and therefore ASP, a deficiency in C3 would be predicted to result in a phenotype characteristic of HyperapoB. To test this hypothesis in vivo, the current study was undertaken in which ASP(C3ades-Arg)-deficient mice were used as a model system. No significant differences were found in the triglyceride, cholesterol, or free fatty acid concentrations in the plasma of fasted normal and ASP(C3ades-Arg)-deficient animals. In addition, plasma lipoprotein analyses indicated that the very low density lipoprotein, low density lipoprotein, and high density lipoprotein cholesterol and triglyceride concentrations as well as the apolipoprotein B-48 and B-100 levels were not significantly different in the plasma of ASP(C3ades-Arg)-deficient and wild type mice. Furthermore, when challenged with an oral fat load, the ASP(C3ades-Arg)-deficient mice showed no impaired ability to clear triglycerides and free fatty acids from their circulation when compared with their wild-type littermates. Collectively, these results indicate that ASP(C3ades-Arg) deficiency does not cause HyperapoB in mice and that the physiological importance of impaired ASP(C3ades-Arg) function as a cause of hyperapobetalipoproteinemia needs to be reevaluated.

PubMed Disclaimer

Publication types

LinkOut - more resources