Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;32(6):1198-211.
doi: 10.1046/j.1365-2958.1999.01430.x.

The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system

Affiliations
Free article

The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system

D De Biase et al. Mol Microbiol. 1999 Jun.
Free article

Abstract

Inducible bacterial amino acid decarboxylases are expressed at the end of active cell division to counteract acidification of the extracellular environment during fermentative growth. It has been proposed that acid resistance in some enteric bacteria strictly relies on a glutamic acid-dependent system. The Escherichia coli chromosome contains distinct genes encoding two biochemically identical isoforms of glutamic acid decarboxylase, GadA and GadB. The gadC gene, located downstream of gadB, has been proposed to encode a putative antiporter implicated in the export of gamma-aminobutyrate, the glutamic acid decarboxylation product. In the present work, we provide in vivo evidence that gadC is co-transcribed with gadB and that the functional glutamic acid-dependent system requires the activities of both GadA/B and GadC. We also found that expression of gad genes is positively regulated by acidic shock, salt stress and stationary growth phase. Mutations in hns, the gene for the histone-like protein H-NS, cause derepressed expression of the gad genes, whereas the rpoS mutation abrogates gad transcription even in the hns background. According to our results, the master regulators H-NS and RpoS are hierarchically involved in the transcriptional control of gad expression: H-NS prevents gad expression during the exponential growth whereas the alternative sigma factor RpoS relieves H-NS repression during the stationary phase, directly or indirectly accounting for transcription of gad genes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources