Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998:52 Pt 2:859-63.

The multi-item univariate delta check method: a new approach

Affiliations
  • PMID: 10384583

The multi-item univariate delta check method: a new approach

I Rheem et al. Stud Health Technol Inform. 1998.

Abstract

The delta check methods are methods for detection of random errors in clinical laboratory tests including specimen abnormalities, specimen mix-up, problems in analysis processes, and clerical errors. Methodologically, it is known that the multivariate delta check methods are more superior to the univariate delta check methods. However, due to some problems in reality including technical difficulties, it is hard to put the multivariate delta check methods into practice. Since the univariate delta check methods are methods at hand, there has been a need for an efficient and effective univariate delta check method. In order to meet such a need, we propose "the multi-item univariate delta check (MIUDC) method". By the multi-item univariate delta check (MIUDC) method, we mean a method in which univariate delta checks are performed on multiple items and specimens with the positive univariate delta check in at least k items are put under a detailed investigation. Our research objectives are the determination of an appropriate value of such k and identification of test items deserving of more interest. Through real data and simulation studies, we concluded that an appropriate value of k is 4 because, with k = 4, we can have light checking-out volumes and high efficiency. Also, we identified total cholesterol, albumin, and total protein as items deserving of more interest because the false positive rate associated with them in the MIUDC was zero in a simulation study. We present the MIUDC method as a quality control method that is easy-to-implement and efficient.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources