Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr-Jun;20(2-3):455-66.

Implications for atypical antioxidative properties of manganese in iron-induced brain lipid peroxidation and copper-dependent low density lipoprotein conjugation

Affiliations
  • PMID: 10385904

Implications for atypical antioxidative properties of manganese in iron-induced brain lipid peroxidation and copper-dependent low density lipoprotein conjugation

I Sziráki et al. Neurotoxicology. 1999 Apr-Jun.

Abstract

Our group recently observed that manganese prevents oxidative brain injury in the iron-induced parkinsonian animal model. It has also been suggested that manganese retards while copper promotes the development of atherosclerosis. In this report, we provide further evidence to support a controversial notion that manganese is an atypical antioxidant. Among transition metals, Cu2+ and Fe2+ (0.1 to 125 microM), but not Mn2+, converted hydrogen peroxide to reactive hydroxyl radicals via the Fenton reaction at pH 7.4. Iron's pro-oxidative rate is relatively slow, but it is accelerated further by ascorbate (50 microM) in 37 degrees C Dulbecco's phosphate buffered saline. Moreover, Mn2+ (0-80 microM) concentration dependently retarded diene conjugation of human low density lipoproteins stimulated by 5 microM Cu2+. This new result is consistent with our recent finding that Mn2+ (0 to 20 microM) does not initiate brain lipid peroxidation while it inhibits iron-induced peroxidation of polyunsaturated fatty acids. These unexpected manganese results are somewhat at odds with a prominent theory that manganese is a prooxidative transition metal. Furthermore, iron and copper induced free radical generation and lipid peroxidation are suppressed by lowering the incubation temperature; this suggests that hypothermia may decrease the oxidative stress and damage in vivo. In conclusion, normal dietary intake of manganese may protect cells and neurons from oxidant stress through the inhibition of propagation of lipid peroxidation caused by hydroxyl radicals generated by pro-oxidative transition metals such as iron and copper. Potential therapeutical uses of manganese, manganese SOD mimetics and hypothermia for protecting brain neurons and vascular endothelial cells against oxidative stress and damage have been successfully demonstrated in both animal models and clinical trials.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources