Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload
- PMID: 10386770
- PMCID: PMC1467932
- DOI: 10.1046/j.1469-7580.1999.19430323.x
Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload
Abstract
The study of the underlying mechanisms by which cells respond to mechanical stimuli, i.e. the link between the mechanical stimulus and gene expression, represents a new and important area in the morphological sciences. Several cell types ('mechanocytes'), e.g. osteoblasts and fibroblasts as well as smooth, cardiac and skeletal muscle cells are activated by mechanical strain and there is now mounting evidence that this involves the cytoskeleton. Muscle offers one of the best opportunities for studying this type of mechanotransduction as the mechanical activity generated by and imposed upon muscle tissue can be accurately controlled and measured in both in vitro and in vivo systems. Muscle is highly responsive to changes in functional demands. Overload leads to hypertrophy, whilst decreased load force generation and immobilisation with the muscle in the shortened position leads to atrophy. For instance it has been shown that stretch is an important mechanical signal for the production of more actin and myosin filaments and the addition of new sarcomeres in series and in parallel. This is preceded by upregulation of transcription of the appropriate genes some of which such as the myosin isoforms markedly change the muscle phenotype. Indeed, the switch in the expression induced by mechanical activity of myosin heavy chain genes which encode different molecular motors is a means via which the tissue adapts to a given type of physical activity. As far as increase in mass is concerned, our group have cloned the cDNA of a splice variant of IGF-1 that is produced by active muscle that appears to be the factor that controls local tissue repair, maintenance and remodelling. From its sequence it can be seen that it is derived from the IGF-1 gene by alternative splicing but it has different exons to the liver isoforms. It has a 52 base insert in the E domain which alters the reading frame of the 3' end. Therefore, this splice variant of IGF-1 is likely to bind to a different binding protein which exists in the interstitial tissue spaces of muscle, neuronal tissue and bone. This would be expected to localise its action as it would be unstable in the unbound form which is important as its production would not disturb the glucose homeostasis unduly. This new growth factor has been called mechano growth factor (MGF) to distinguish it from the liver IGFs which have a systemic mode of action. Although the liver is usually thought of as the source of circulating IGF-1, it has recently been shown that during exercise skeletal muscle not only produces much of the circulating IGF-1 but active musculature also utilises most of the IGF-I produced. We have cloned both an autocrine and endocrine IGF-1, both of which are upregulated in cardiac as well as skeletal muscle when subjected to overload. It has been shown that, in contrast to normal muscle, MGF is not detectable in dystrophic mdx muscles even when subjected to stretch and stretch combined with electrical stimulation. This is true for muscular dystrophies that are due to the lack of dystrophin (X-linked) and due to a laminin deficiency (autosomal), thus indicating that the dystrophin cytoskeletal complex may be involved in the mechanotransduction mechanism. When this complex is defective the necessary systemic as well as autocrine IGF-1 growth factors required for local repair are not produced and the ensuing cell death results in progressive loss of muscle mass. The discovery of the locally produced IGF-1 appears to provide the link between the mechanical stimulus and the activation of gene expression.
Similar articles
-
Effects of activity on growth factor expression.Int J Sport Nutr Exerc Metab. 2001 Dec;11 Suppl:S21-7. doi: 10.1123/ijsnem.11.s1.s21. Int J Sport Nutr Exerc Metab. 2001. PMID: 11915923 Review.
-
Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation.J Physiol. 1999 Apr 15;516 ( Pt 2)(Pt 2):583-92. doi: 10.1111/j.1469-7793.1999.0583v.x. J Physiol. 1999. PMID: 10087355 Free PMC article.
-
Gene expression in skeletal muscle.Biochem Soc Trans. 2002 Apr;30(2):285-90. Biochem Soc Trans. 2002. PMID: 12023866 Review.
-
Gene expression in muscle in response to exercise.J Muscle Res Cell Motil. 2003;24(2-3):121-6. doi: 10.1023/a:1026041228041. J Muscle Res Cell Motil. 2003. PMID: 14609023 Review.
-
Impairment of IGF-I gene splicing and MGF expression associated with muscle wasting.Int J Biochem Cell Biol. 2006 Mar;38(3):481-9. doi: 10.1016/j.biocel.2005.10.001. Int J Biochem Cell Biol. 2006. PMID: 16463438 Review.
Cited by
-
Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis.J Clin Invest. 2016 Sep 1;126(9):3433-46. doi: 10.1172/JCI86522. Epub 2016 Aug 15. J Clin Invest. 2016. PMID: 27525440 Free PMC article.
-
Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism.Biochem J. 2004 Jun 15;380(Pt 3):795-804. doi: 10.1042/BJ20040274. Biochem J. 2004. PMID: 15030312 Free PMC article.
-
Stretching and electrical stimulation reduce the accumulation of MyoD, myostatin and atrogin-1 in denervated rat skeletal muscle.J Muscle Res Cell Motil. 2010 Jul;31(1):45-57. doi: 10.1007/s10974-010-9203-z. Epub 2010 Feb 27. J Muscle Res Cell Motil. 2010. PMID: 20191313
-
Disparate Central and Peripheral Effects of Circulating IGF-1 Deficiency on Tissue Mitochondrial Function.Mol Neurobiol. 2020 Mar;57(3):1317-1331. doi: 10.1007/s12035-019-01821-4. Epub 2019 Nov 15. Mol Neurobiol. 2020. PMID: 31732912 Free PMC article.
-
Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells.Pflugers Arch. 2003 Nov;447(2):247-53. doi: 10.1007/s00424-003-1177-x. Epub 2003 Oct 8. Pflugers Arch. 2003. PMID: 14534791
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous