Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1978 Dec;79(3):694-707.
doi: 10.1083/jcb.79.3.694.

Comparative studies of intracellular transport of secretory proteins

Comparative Study

Comparative studies of intracellular transport of secretory proteins

A Tartakoff et al. J Cell Biol. 1978 Dec.

Abstract

The physiology of protein intracellular transport and secretion by cell types thought to be free from short-term control has been compared with that of the pancreatic acinar cell, using pulse-chase protocols to follow biosynthetically-labeled secretory products. Data previously obtained (Tartakoff, A.M., and P. Vassalli. J. Exp. Med. 146:1332-1345) has shown that plasma-cell immunoglobulin (Ig) secretion is inhibited by respiratory inhibitors, by partial Na/K equilibration effected by the carboxylic ionophore monensin, and by calcium withdrawal effected by the carboxylic ionophore A 23187 in the presence of ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and absence of calcium. We report here that both inhibition of respiration and treatment with monensin slow secretion by fibroblasts, and also macrophages and slow intracellular transport (though not discharge per se) by the exocrine pancreatic cells. Attempted calcium withdrawal is inhibitory for fibroblasts but not for macrophages. The elimination of extracellular calcium or addition of 50 mM KCl has no major effect on secretory rate of either fibroblasts or macrophages. Electron microscopic examination of all cell types shows that monensin causes a rapid and impressive dilation of Golgi elements. Combined cell fractionation and autoradiographic studies of the pancreas show that the effect of monensin is exerted at the point of the exit of secretory protein from the Golgi apparatus. Other steps in intracellular transport proceed at normal rates. These observations suggest a common effect of the cytoplasmic Na/K balance at the Golgi level and lead to a model of intracellular transport in which secretory product obligatorily passes through Golgi elements (cisternae?) that are sensitive to monensin. Thus, intracellular transport follows a similar course in both regulated and nonregulated secretory cells up to the level of distal Golgi elements.

PubMed Disclaimer

References

    1. J Biol Chem. 1975 Apr 10;250(7):2660-70 - PubMed
    1. J Exp Med. 1977 Nov 1;146(5):1332-45 - PubMed
    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
    1. Arch Biochem Biophys. 1976 Jul;175(1):341-50 - PubMed
    1. J Cell Biol. 1977 Feb;72(2):406-23 - PubMed

Publication types

MeSH terms