Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Jul;45(7):942-56.

Human anti-animal antibody interferences in immunological assays

Affiliations
  • PMID: 10388468
Review

Human anti-animal antibody interferences in immunological assays

L J Kricka. Clin Chem. 1999 Jul.

Erratum in

  • Clin Chem 2000 Oct;46(10):1722

Abstract

Purpose: The scope and significance of human anti-animal antibody interference in immunological assays is reviewed with an emphasis on human anti-animal immunoglobulins, particularly human anti-mouse antibodies (HAMAs).

Issues: Anti-animal antibodies (IgG, IgA, IgM, IgE class, anti-isotype, and anti-idiotype specificity) arise as a result of iatrogenic and noniatrogenic causes and include human anti-mouse, -rabbit, -goat, -sheep, -cow, -pig, -rat, and -horse antibodies and antibodies with mixed specificity. Circulating antibodies can reach gram per liter concentrations and may persist for years. Prevalence estimates for anti-animal antibodies in the general population vary widely and range from <1% to 80%. Human anti-animal antibodies cause interferences in immunological assays. The most common human anti-animal antibody interferent is HAMA, which causes both positive and negative interferences in two-site mouse monoclonal antibody-based assays. Strategies to prevent the development of human anti-animal antibody responses include immunosuppressant therapy and the use of humanized, polyethylene glycolylated, or Fab fragments of antibody agents. Sample pretreatment or assay redesign can eliminate immunoassay interferences caused by anti-animal antibodies. Enzyme immunoassays, immunoradiometric assays, immunofluorescence, and HPLC assays have been designed to detect HAMA and other anti-animal antibodies, but intermethod comparability is complicated by differences in assay specificity and lack of standardization.

Conclusions: Human anti-animal antibodies often go unnoticed, to the detriment of patient care. A heightened awareness on the part of laboratory staff and clinicians of the problems caused by this type of interference in routine immunoassay tests is desirable. Efforts should be directed at improving methods for identifying and eliminating this type of analytical interference.

PubMed Disclaimer

Comment in

Similar articles

Cited by

LinkOut - more resources