Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Jul;79(3):703-61.
doi: 10.1152/physrev.1999.79.3.703.

Microvascular permeability

Affiliations
Free article
Review

Microvascular permeability

C C Michel et al. Physiol Rev. 1999 Jul.
Free article

Abstract

This review addresses classical questions concerning microvascular permeabiltiy in the light of recent experimental work on intact microvascular beds, single perfused microvessels, and endothelial cell cultures. Analyses, based on ultrastructural data from serial sections of the clefts between the endothelial cells of microvessels with continuous walls, conform to the hypothesis that different permeabilities to water and small hydrophilic solutes in microvessels of different tissues can be accounted for by tortuous three-dimensional pathways that pass through breaks in the junctional strands. A fiber matrix ultrafilter at the luminal entrance to the clefts is essential if microvascular walls are to retain their low permeability to macromolecules. Quantitative estimates of exchange through the channels in the endothelial cell membranes suggest that these contribute little to the permeability of most but not all microvessels. The arguments against the convective transport of macromolecules through porous pathways and for the passage of macromolecules by transcytosis via mechanisms linked to the integrity of endothelial vesicles are evaluated. Finally, intracellular signaling mechanisms implicated in transient increases in venular microvessel permeability such as occur in acute inflammation are reviewed in relation to studies of the molecular mechanisms involved in signal transduction in cultured endothelial cells.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources