Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;7(2):121-9.
doi: 10.1109/86.769401.

A biomimetic controller for a multifinger prosthesis

Affiliations

A biomimetic controller for a multifinger prosthesis

R L Abboudi et al. IEEE Trans Rehabil Eng. 1999 Jun.

Abstract

A novel controller for a multifinger hand prosthesis was developed and tested to measure its accuracy and performance in transducing volitional signals for individual "phantom" fingers. Pneumatic sensors were fabricated from open-cell polymeric foam, and were interposed between the prosthetic socket and superficial extrinsic tendons associated with individual finger flexion. Test subjects were prompted to move individual fingers or combinations thereof to execute either taps or grasps. Sensor outputs were processed by a computer that controlled motions of individual fingers on a mechanical prosthesis. Trials on three upper-limb amputees showed that after brief training sessions, the TAP controller was effective at producing voluntary flexions of individual fingers and grasping motions. Signal energies were between 5 and 25 dB relative to noise from all sources, including adjacent sensors, indicating high degrees of both sensitivity and specificity for tendon-associated transduction. Finger flexions at up to three repetitions per second, and rhythmic tapping of sequential fingers were readily transduced. One amputee subject was able to play a short piano piece with three fingers, at approximately one-quarter normal tempo. TAP sensors responded linearly to graded forces from individual fingers, indicating proportional force control. Our results demonstrate the feasibility of restoring some degree of finger dexterity by noninvasive sensing of extrinsic tendons.

PubMed Disclaimer

Publication types

LinkOut - more resources