Finishing the cell cycle
- PMID: 10395816
- DOI: 10.1006/jtbi.1999.0956
Finishing the cell cycle
Abstract
The eukaryotic cell division cycle consists of two characteristic states: G1, when replication origins of chromosomes are in a pre-replicative state, and S/G2/M, when they are in a post-replicative state (Nasmyth, 1995). Using straightforward biochemical kinetics, we show that these two states can be created by antagonistic interactions between cyclin-dependent kinases (Cdk) and their foes: the cyclin-degradation machinery (APC) and a stoichiometric inhibitor (CKI). Irreversible transitions between these two self-maintaining steady states drive progress through the cell cycle: at "Start" a cell leaves the G1 state and commences chromosome replication, and at "Finish" the cell separates the products of replication to the incipient daughter cells and re-enters G1. We propose that a protein-phosphatase, by up-regulating the APC and by stabilizing the CKI, plays an essential role at Finish. The phosphatase acts in parallel pathways; hence, cells can leave mitosis in the absence of cyclin degradation or in the absence of the CKI.
Copyright 1999 Academic Press.
Similar articles
-
Model scenarios for evolution of the eukaryotic cell cycle.Philos Trans R Soc Lond B Biol Sci. 1998 Dec 29;353(1378):2063-76. doi: 10.1098/rstb.1998.0352. Philos Trans R Soc Lond B Biol Sci. 1998. PMID: 10098216 Free PMC article. Review.
-
Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions.J Theor Biol. 2001 May 21;210(2):249-63. doi: 10.1006/jtbi.2001.2293. J Theor Biol. 2001. PMID: 11371178
-
A simple time delay model for eukaryotic cell cycle.J Theor Biol. 2006 Aug 7;241(3):617-27. doi: 10.1016/j.jtbi.2005.12.020. Epub 2006 Feb 13. J Theor Biol. 2006. PMID: 16473373
-
Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases.Nature. 2001 Jul 19;412(6844):355-8. doi: 10.1038/35085610. Nature. 2001. PMID: 11460169
-
pRb and the cdks in apoptosis and the cell cycle.Cell Death Differ. 1998 Feb;5(2):132-40. doi: 10.1038/sj.cdd.4400323. Cell Death Differ. 1998. PMID: 10200457 Review.
Cited by
-
Multi-scale modeling of tissues using CompuCell3D.Methods Cell Biol. 2012;110:325-66. doi: 10.1016/B978-0-12-388403-9.00013-8. Methods Cell Biol. 2012. PMID: 22482955 Free PMC article.
-
Spindle Dynamics Model Explains Chromosome Loss Rates in Yeast Polyploid Cells.Front Genet. 2018 Aug 6;9:296. doi: 10.3389/fgene.2018.00296. eCollection 2018. Front Genet. 2018. PMID: 30131823 Free PMC article.
-
Kinetic analysis of a molecular model of the budding yeast cell cycle.Mol Biol Cell. 2000 Jan;11(1):369-91. doi: 10.1091/mbc.11.1.369. Mol Biol Cell. 2000. PMID: 10637314 Free PMC article.
-
Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint.Curr Biol. 2006 Jun 20;16(12):1194-200. doi: 10.1016/j.cub.2006.04.043. Curr Biol. 2006. PMID: 16782009 Free PMC article.
-
The role of modelling in identifying drug targets for diseases of the cell cycle.J R Soc Interface. 2006 Oct 22;3(10):617-27. doi: 10.1098/rsif.2006.0146. J R Soc Interface. 2006. PMID: 16971330 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources