Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;34(5):435-45.
doi: 10.1016/s0197-0186(99)00040-6.

GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy

Affiliations

GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy

J M Fritschy et al. Neurochem Int. 1999 May.

Abstract

Mesial temporal lobe epilepsy (MTLE) is the most prevalent form of epilepsy, characterized by recurrent complex partial seizures and hippocampal sclerosis. The pathophysiology underlying this disorder remains unidentified. While a loss of benzodiazepine binding sites is a key diagnostic feature of MTLE, experimental studies have shown enhanced inhibitory transmission and increased expression of GABA(A)-receptors, suggesting that compensatory mechanisms are operative in epileptic hippocampus. In the present study, changes in the expression and cellular distribution of major GABA(A)-receptor subunits were investigated in the hippocampus of pilocarpine-treated rats during the phase of spontaneous recurrent seizures. A uniform decrease in GABA(A)-receptor subunit-immunoreactivity was observed in regions of extensive neuronal death (i.e. CA1, CA3, hilus). whereas a prominent increase occurred in the dentate gyrus (DG). Most strikingly, the increase was largest for the alpha3- and alpha5-subunits, which are expressed at very low levels in the DG of control rats, suggesting the formation of novel GABA(A)-receptor subtypes in epileptic tissue. Furthermore, an extensive loss of interneurons expressing the alpha1-subunit, representing presumptive basket cells, was seen in the DG. These changes were very similar to those reported in a novel mouse model of MTLE, based on the unilateral injection of kainic acid into the dorsal hippocampus (Bouilleret et al., 1999). This indicates that the regulation of GABA(A)-receptor expression is related to chronic recurrent seizures, and is not due to the extrahippocampal neuronal damage affecting pilocarpine-treated rats. These results allow causal relationships in the induction and maintenance of chronic recurrent seizures to be distinguished. The loss of a critical number of interneurons in the DG is a possible cause of seizure initiation, whereas the long-lasting upregulation of GABA(A)-receptors in granule cells represents a compensatory response to seizure activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources