Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;44(2):206-16.
doi: 10.1002/(sici)1097-4636(199902)44:2<206::aid-jbm11>3.0.co;2-d.

Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro

Affiliations

Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro

C R Jenney et al. J Biomed Mater Res. 1999 Feb.

Abstract

Surface immobilized polyethylene oxide (PEO) has been shown to efficiently reduce protein adsorption and cellular adhesion, resulting in a biologically passive surface. To explore the in vitro effects of surface immobilized PEO on the human inflammatory cells, macrophages, and foreign body giant cells (FBGCs), we developed a diisocyanate-based method for coupling PEO to amine-modified glass, a surface previously shown to enhance macrophage adhesion and FBGC formation. Contact angle analysis and X-ray photoelectron spectroscopy confirmed the presence of PEO molecules bound to the surface and revealed that PEO molecular weight significantly influenced the efficiency of PEO coupling. We used a 10-day human monocyte culture protocol to demonstrate that the presence of surface coupled PEO molecules does not significantly decrease initial monocyte density or monocyte-derived macrophage density after 3 days. However, PEO-coupled surfaces significantly reduced long-term monocyte-derived macrophage density and virtually eliminated interleukin-4-induced FBGC formation observed at day 10. The cellular response to these PEO-coupled surfaces was related to the molecular weight of the PEO chains, which was varied between 200 Da and 18.5 kDa. These results suggest that an optimized PEO surface treatment may be effective in reducing inflammatory cell adhesion and possible degradation during the inflammatory response to an implanted biomedical device.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources