Real-time 3-dimensional volumetric ultrasound imaging of the vena contracta for stenotic valves with the use of echocardiographic contrast imaging: in vitro pulsatile flow studies
- PMID: 10398912
- DOI: 10.1016/s0894-7317(99)70001-5
Real-time 3-dimensional volumetric ultrasound imaging of the vena contracta for stenotic valves with the use of echocardiographic contrast imaging: in vitro pulsatile flow studies
Abstract
The purpose of our study was to investigate the utility of real-time 3-dimensional volumetric ultrasound coupled with echo contrast imaging to visualize and quantify effective flow areas for stenotic valves in vitro. Real-time 3-dimensional ultrasound imaging has recently emerged as a promising method for increasing the quantitative accuracy of echocardiography. Since the technique currently does not process Doppler information, its use for quantifying flow has not been studied. However, the use of contrast agents to visualize cardiac flows with the use of echocardiography should allow determination of mass-dependent flow parameters such as effective flow area (vena contracta area) for stenotic lesions. We used real-time 3-dimensional imaging in an in vitro stenotic valve model (areas 0.785 to 1.767 cm2) under pulsatile flow conditions (60 bpm; 40 to 80 mL/beat). An echo contrast agent was used to visualize the distal jet. Real-time 3-dimensional imaging provides simultaneous views of long-axis and short-axis (C-scan) image planes of the jet. The vena contracta was identified and measured by placing the C-scan line immediately distal to the orifice and measuring the cross-sectional flow area. System gain and postprocessing curve shape affected 3-dimensional areas; minimal gain and a custom curve produced best agreement to actual vena contracta areas measured with a previously validated laser method (y = 0.939x + 0.089; r = 0.98; standard error of estimate = 0.158 cm2). We conclude that real-time 3-dimensional ultrasound imaging coupled with a contrast agent can be used as an accurate yet simple clinical means of measuring effective flow areas for stenotic valves.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical