Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul 16;274(29):20116-22.

Constitutive phosphorylation of the acidic tails of the high mobility group 1 proteins by casein kinase II alters their conformation, stability, and DNA binding specificity

Affiliations
  • PMID: 10400623
Free article

Constitutive phosphorylation of the acidic tails of the high mobility group 1 proteins by casein kinase II alters their conformation, stability, and DNA binding specificity

J R Wiśniewski et al. J Biol Chem. .
Free article

Abstract

The high mobility group (HMG) 1 and 2 proteins are the most abundant non-histone components of chromosomes. Here, we report that essentially the entire pool of HMG1 proteins in Drosophila embryos and Chironomus cultured cells is phosphorylated at multiple serine residues located within acidic tails of these proteins. The phosphorylation sites match the consensus phosphorylation site of casein kinase II. Electrospray ionization mass spectroscopic analyses revealed that Drosophila HMGD and Chironomus HMG1a and HMG1b are double-phosphorylated and that Drosophila HMGZ is triple-phosphorylated. The importance of this post-translational modification was studied by comparing some properties of the native and in vitro dephosphorylated proteins. It was found that dephosphorylation affects the conformation of the proteins and decreases their conformational and metabolic stability. Moreover, it weakens binding of the proteins to four-way junction DNA by 2 orders of magnitude, whereas the strength of binding to linear DNA remains unchanged. Based on these observations, we propose that the detected phosphorylation is important for the proper function and turnover rates of these proteins. As the occurrence of acidic tails containing canonical casein kinase II phosphorylation sites is common to diverse HMG and other chromosomal proteins, our results are probably of general significance.

PubMed Disclaimer

Publication types

LinkOut - more resources