Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;10(2):191-203.

Role of interleukin-6 in a non-septic shock model induced by zymosan

Affiliations
  • PMID: 10400825
Free article

Role of interleukin-6 in a non-septic shock model induced by zymosan

S Cuzzocrea et al. Eur Cytokine Netw. 1999 Jun.
Free article

Abstract

In the present study, we used IL-6 knock-out mice (IL-6KO) to evaluate a possible role of IL-6 in the pathogenesis of non-septic shock induced by peritoneal injection of zymosan. A severe inflammatory response characterized by peritoneal exudation, high peritoneal levels of nitrate/nitrite, and leukocyte infiltration into peritoneal exudate was induced by zymosan administration in wild-type control (WT) mice. This inflammatory process coincided with the damage to the lung and small intestine, as assessed by histological examination. Lung, small intestine and liver myeloperoxidase (MPO) activity, indicative of neutrophil infiltration and lipid peroxidation, were significantly increased in zymosan-treated WT mice. Peritoneal administration of zymosan in the WT mice also induced a significant increase in the plasma levels of nitrite/nitrate and in the levels of peroxynitrite, 18 hours after zymosan challenge. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine in the lung of zymosan-treated WT mice. Zymosan-treated IL-6KO showed significantly decreased mortality and inhibition of the development of peritonitis. In addition, IL-6KO mice showed significant protection from the development of organ failure, since tissue injury and MPO was reduced in the lung, small intestine and liver. Furthermore, a significant reduction of suppression of mitochondrial respiration, DNA strand breakage and reduction of cellular levels of NAD+ was observed in ex vivo macrophages harvested from the peritoneal cavity of IL-6KO mice subjected to zymosan-induced non-septic shock. In vivo treatment with anti-IL-6 (5,000 ng/day per mouse, 24 and 1 hour before zymosan administration) significantly reduced the inflammatory process. Taken together, the present study clearly demonstrates that IL-6 exerts a role in zymosan-induced non-septic shock.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms