Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul;24(7):495-500.
doi: 10.1097/00003072-199907000-00004.

Fluorine-18 fluorodeoxyglucose imaging using dual-head coincidence positron emission tomography without attenuation correction in patients with head and neck cancer

Affiliations

Fluorine-18 fluorodeoxyglucose imaging using dual-head coincidence positron emission tomography without attenuation correction in patients with head and neck cancer

M Pai et al. Clin Nucl Med. 1999 Jul.

Abstract

Purpose: An accurate, preoperative assessment of tumor extent and lymph node involvement is necessary to plan and tailor therapy for patients with head and neck cancer. Metabolic imaging with fluorine-18 fluorodeoxy-glucose (FDG) is a good method to detect primary tumors in the head and neck and to assess the involvement of lymph nodes, but it is not widely available because of the high cost of positron emission tomography (PET). Recently, an alternative method for using FDG was developed: coincidence detection PET (CoDe PET) using a gamma camera. The aim of this study was to evaluate the clinical utility of FDG CoDe PET using a gamma camera in patients with head and neck cancer.

Materials and methods: Thirty FDG CoDe PET studies without attenuation correction were performed in seven patients before therapy and in 19 patients after therapy (ages: 25-79 years, mean, 50 +/- 13 years; 18 men, 8 women) with various head and neck cancers. All patients had fasted for 6 to 12 hours and were injected with 111 to 370 MBq F-18 FDG 1 hour before imaging. Visually detectable focal FDG uptake in the primary tumor site or in the neck was considered positive except for physiologic uptake. The FDG CoDe PET studies were correlated with MRI. The gold standard for the presence of disease was the combination of repeated MRIs, endoscopic examination, and 3 months of follow-up clinical evaluation.

Results: FDG CoDe PET had a detection rate that was comparable to that of MRI in the pretherapy group. However, in the posttherapy group, FDG CoDe PET could differentiate residual tumor or tumor recurrence from radiation change more accurately than could MRI. However, it had a less accurate detection rate for cervical node metastases because of asymmetric neck muscle uptake.

Conclusions: FDG CoDe PET is a sensitive and cost-effective method to detect primary tumor and lymph node involvement in primary head and neck cancers. It is also useful in differentiating residual tumor or tumor recurrence from posttherapy changes in patients with head and neck tumors.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

Substances

LinkOut - more resources