Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;34(6):499-507.
doi: 10.1016/s0197-0186(99)00025-x.

Norepinephrine induced alpha-adrenoceptor mediated increase in rat brain Na-K ATPase activity is dependent on calcium ion

Affiliations

Norepinephrine induced alpha-adrenoceptor mediated increase in rat brain Na-K ATPase activity is dependent on calcium ion

B N Mallick et al. Neurochem Int. 1999 Jun.

Abstract

It has been reported that norepinephrine increases Na-K ATPase activity by acting on alpha-1 adrenoceptors. The mechanism of such an increase was investigated. The norepinephrine induced increase in synaptosomal Na-K ATPase activity was prevented by pretreating the rat brain homogenate with either EDTA, a divalent cation chelator or prazosin, an alpha-1 adrenoceptor blocker. The norepinephrine and EGTA increased the Na-K ATPase activity in the synaptosome prepared from rat brain homogenate untreated with EDTA. The EGTA was ineffective in stimulating the enzyme activity if the synaptosome was prepared from homogenate treated with norepinephrine. However, the EGTA was effective in increasing the enzyme activity if the synaptosome was prepared from the homogenate treated with norepinephrine in the presence of prazosin. Thus, norepinephrine did not increase the Na-K ATPase activity in the presence of EDTA or alpha-1 adrenoceptor blocker. Similarly, the Ca++ chelator, EGTA, could not increase the enzyme activity if the homogenate was pretreated with norepinephrine alone. However, if norepinephrine action was blocked by alpha-1 antagonist prazosin, EGTA increased the enzyme activity possibly by chelation of Ca++. Further, chlorotetracycline fluorescence study showed that norepinephrine removes membrane bound Ca++. Thus, it is likely that norepinephrine acts on adrenoceptors and removes membrane bound Ca++ and thereby increases the Na-K ATPase activity in the synaptosome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources