Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul;42(7):1466-72.
doi: 10.1002/1529-0131(199907)42:7<1466::AID-ANR21>3.0.CO;2-L.

Lymphoma development in Sjögren's syndrome: novel p53 mutations

Affiliations

Lymphoma development in Sjögren's syndrome: novel p53 mutations

N I Tapinos et al. Arthritis Rheum. 1999 Jul.

Abstract

Objective: Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by lymphocytic infiltrations of the exocrine glands. Disease progression may lead to uncontrolled clonal proliferation of B lymphocytes and development of lymphoma. This study was undertaken to examine the possible involvement of the cell cycle checkpoint genes p53 and p21 in the pathophysiology of the syndrome.

Methods: Protein expression of p53 and p21 was studied, by immunohistochemistry and Western blot analysis, in minor salivary gland (MSG) biopsy specimens from 7 patients with SS and 5 control subjects. In addition, sequence analysis of the p53 gene was performed on DNA samples obtained from MSG biopsy samples of the same 7 patients with SS and from 4 patients with SS and in situ non-Hodgkin's lymphoma (NHL).

Results: The study revealed increased protein expression of p53 and p21 in MSG biopsy specimens from patients as compared with controls, while sequence analysis showed that the p53 gene was of the wild type. Furthermore, sequence analysis of the p53 gene from patients with SS and in situ NHL revealed 2 novel mutations in exon 5 of the p53 gene. These mutations are single-base substitutions and appear to be functional since exon 5 is included in the coding region of the p53 gene.

Conclusion: This is the first report on wild-type p53 gene activation in SS. Our findings indicate a probable role for the DNA damage response genes in the pathogenesis of this syndrome. The novel mutations of the p53 gene implicate dysregulation of this tumor suppressor gene as a possible mechanism for lymphoma development in SS.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

Substances