Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul 1;58(1):49-57.
doi: 10.1016/s0006-2952(99)00075-1.

A novel function of emodin: enhancement of the nucleotide excision repair of UV- and cisplatin-induced DNA damage in human cells

Affiliations

A novel function of emodin: enhancement of the nucleotide excision repair of UV- and cisplatin-induced DNA damage in human cells

L C Chang et al. Biochem Pharmacol. .

Abstract

Nucleotide excision repair (NER) is the main pathway by which mammalian cells remove carcinogenic DNA lesions caused by UV light and many other common mutagens. To explore the effect of emodin on NER, its influence on the repair of UV- and cisplatin-induced DNA damage in human fibroblast cells (WI38) was evaluated. Emodin increased unscheduled DNA synthesis (UDS) of UV-treated cells and reduced cisplatin-induced DNA adducts in WI38 in a concentration-dependent manner, indicating that emodin might promote NER capability in cells. The resultant NER complex is a cooperative assembly of XPF, ERCC1, XPA, RPA, and XPG subunits. The gene regulations of the subunits after emodin treatment were determined by reverse transcription-polymerase chain reaction (RT-PCR) using specific primers. Among the subunits, the expression of ERCC1 in WI38 cells was up-regulated significantly after emodin treatment. All other expressions remained essentially unchanged. In addition, calcium influx in WI38 was increased in proportion to the concentration of emodin. Since UV-induced NER is Ca2+ dependent, elevation of calcium influx may be another mechanism by which emodin facilitates DNA repair. In conclusion, emodin can increase the repair of UV- and cisplatin-induced DNA damage in human cells, and elevated ERCC1 gene expression and Ca2+-mediated DNA repair processes may be involved in the repair mechanism of emodin.

PubMed Disclaimer

Publication types