Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999;17(1):45-51.
doi: 10.1055/s-2007-1016211.

The decidua regulates hemostasis in human endometrium

Affiliations
Review

The decidua regulates hemostasis in human endometrium

C J Lockwood et al. Semin Reprod Endocrinol. 1999.

Abstract

Survival of the implanting human blastocyst requires that trophoblasts gain access to the maternal circulation. This is initially achieved when syncytiotrophoblasts breach endometrial capillarlies and venules. Subsequently, extravillous cytotrophoblasts penetrate the spiral arteries to induce their morphological transformation into high-flow, low-resistance vessels. This process provides the embryo with a requisite source of oxygen and nutrients, but risks decidual hemorrhage leading to abortion and abruption. Endovascular trophoblast invasion occurs within a matrix of decidualizing endometrial stromal cells. These decidual cells are temporally and spatially positioned to create a local hemostatic milieu which can counteract the threat of hemorrhage. Prior studies from our laboratory have established that decidual cells of luteal phase and pregnant endometrium express two crucial modulators of hemostasis: 1) tissue factor (TF), the primary initiator of hemostasis via factor Xa activation; and 2) plasminogen activator inhibitor type 1 (PAI-1), the fast inhibitor of the primary fibrinolytic agent, tissue type plasminogen activator. This coordinate increase in TF and PAI-1 expression provides a mechanism by which decidual cells control local hemostasis during endovascular trophoblast invasion. Cultures of human endometrial stromal cells and decidual cells isolated from first trimester endometrium demonstrate that progestins enhance TF and PAI-1 protein and mRNA expression via the induction of crucial intermediate transcription factors. Integration of these in vivo observations and in vitro studies suggest a model by which decidua acts to maintain hemostasis during implantation and placentation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources