Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting
- PMID: 10406799
- PMCID: PMC1171470
- DOI: 10.1093/emboj/18.14.3947
Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting
Abstract
We determined at 2.3 A resolution the crystal structure of prophytepsin, a zymogen of a barley vacuolar aspartic proteinase. In addition to the classical pepsin-like bilobal main body of phytepsin, we also traced most of the propeptide, as well as an independent plant-specific domain, never before described in structural terms. The structure revealed that, in addition to the propeptide, 13 N-terminal residues of the mature phytepsin are essential for inactivation of the enzyme. Comparison of the plant-specific domain with NK-lysin indicates that these two saposin-like structures are closely related, suggesting that all saposins and saposin-like domains share a common topology. Structural analysis of prophytepsin led to the identification of a putative membrane receptor-binding site involved in Golgi-mediated transport to vacuoles.
Similar articles
-
Novel ways to prevent proteolysis - prophytepsin and proplasmepsin II.Curr Opin Struct Biol. 1999 Dec;9(6):684-9. doi: 10.1016/s0959-440x(99)00030-5. Curr Opin Struct Biol. 1999. PMID: 10607668 Review.
-
A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum.Plant Cell. 2001 Sep;13(9):2021-32. doi: 10.1105/tpc.000533. Plant Cell. 2001. PMID: 11549761 Free PMC article.
-
Crystal structure of the novel aspartic proteinase zymogen proplasmepsin II from plasmodium falciparum.Nat Struct Biol. 1999 Jan;6(1):32-7. doi: 10.1038/4905. Nat Struct Biol. 1999. PMID: 9886289
-
Transport and activation of the vacuolar aspartic proteinase phytepsin in barley (Hordeum vulgare L.).J Biol Chem. 1998 Nov 20;273(47):31230-6. doi: 10.1074/jbc.273.47.31230. J Biol Chem. 1998. PMID: 9813030
-
The structure and function of Saccharomyces cerevisiae proteinase A.Yeast. 2007 Jun;24(6):467-80. doi: 10.1002/yea.1485. Yeast. 2007. PMID: 17447722 Review.
Cited by
-
The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics.PLoS One. 2020 Aug 25;15(8):e0237884. doi: 10.1371/journal.pone.0237884. eCollection 2020. PLoS One. 2020. PMID: 32841243 Free PMC article.
-
Phylogenetic and AlphaFold predicted structure analyses provide insights for A1 aspartic protease family classification in Arabidopsis.Front Plant Sci. 2023 Feb 3;14:1072168. doi: 10.3389/fpls.2023.1072168. eCollection 2023. Front Plant Sci. 2023. PMID: 36818878 Free PMC article.
-
A cut above the rest: the regulatory function of plant proteases.Planta. 2004 Dec;220(2):183-97. doi: 10.1007/s00425-004-1407-2. Epub 2004 Oct 29. Planta. 2004. PMID: 15517349 Review.
-
Insights into the membrane interactions of the saposin-like proteins Na-SLP-1 and Ac-SLP-1 from human and dog hookworm.PLoS One. 2011;6(10):e25369. doi: 10.1371/journal.pone.0025369. Epub 2011 Oct 3. PLoS One. 2011. PMID: 21991310 Free PMC article.
-
Defense and Offense Strategies: The Role of Aspartic Proteases in Plant-Pathogen Interactions.Biology (Basel). 2021 Jan 21;10(2):75. doi: 10.3390/biology10020075. Biology (Basel). 2021. PMID: 33494266 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases