Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Jul 13;1432(2):159-84.
doi: 10.1016/s0167-4838(99)00119-3.

New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase

Affiliations
Review

New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase

M A Sirover. Biochim Biophys Acta. .

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was considered a classical glycolytic protein examined for its pivotal role in energy production. It was also used as a model protein for analysis of protein structure and enzyme mechanisms. The GAPDH gene was utilized as a prototype for studies of genetic organization, expression and regulation. However, recent evidence demonstrates that mammalian GAPDH displays a number of diverse activities unrelated to its glycolytic function. These include its role in membrane fusion, microtubule bundling, phosphotransferase activity, nuclear RNA export, DNA replication and DNA repair. These new activities may be related to the subcellular localization and oligomeric structure of GAPDH in vivo. Furthermore, other investigations suggest that GAPDH is involved in apoptosis, age-related neurodegenerative disease, prostate cancer and viral pathogenesis. Intriguingly, GAPDH is also a unique target of nitric oxide. This review discusses the functional diversity of GAPDH in relation to its protein structure. The mechanisms through which mammalian cells may utilize GAPDH amino acid sequences to provide these new functions and to determine its intracellular localization are considered. The interrelationship between new GAPDH activities and its role in cell pathologies is addressed.

PubMed Disclaimer

Publication types

LinkOut - more resources