Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines
- PMID: 10407276
- DOI: 10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W
Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines
Abstract
Epitope tagging of proteins as a strategy for the analysis of function, interactions and the subcellular distribution of proteins has become widely used. In the yeast Saccharomyces cerevisiae, molecular biological techniques have been developed that use a simple PCR-based strategy to introduce epitope tags to chromosomal loci (Wach et al., 1994). To further employ the power of this strategy, a variety of novel tags was constructed. These tags were combined with different selectable marker genes, resulting in PCR amplificable modules. Only one set of primers is required for the amplification of any module. Furthermore, convenient laboratory techniques are described that facilitate the genetic manipulations of yeast strains, as well as the analysis of the epitope-tagged proteins.
Copyright 1999 John Wiley & Sons, Ltd.
Similar articles
-
PCR-mediated epitope tagging of genes in yeast.Methods Mol Biol. 2014;1205:37-44. doi: 10.1007/978-1-4939-1363-3_4. Methods Mol Biol. 2014. PMID: 25213238
-
N-ICE plasmids for generating N-terminal 3 × FLAG tagged genes that allow inducible, constitutive or endogenous expression in Saccharomyces cerevisiae.Yeast. 2017 May;34(5):223-235. doi: 10.1002/yea.3226. Epub 2017 Jan 23. Yeast. 2017. PMID: 27943405
-
A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes.Yeast. 2004 Aug;21(11):947-62. doi: 10.1002/yea.1142. Yeast. 2004. PMID: 15334558
-
Surveillance and genome stability in budding yeast: implications for mammalian carcinogenesis.Curr Top Microbiol Immunol. 1997;221:19-35. doi: 10.1007/978-3-642-60505-5_3. Curr Top Microbiol Immunol. 1997. PMID: 8979438 Review. No abstract available.
-
PCR-based methods facilitate targeted gene manipulations and cloning procedures.Curr Genet. 2003 Nov;44(3):115-23. doi: 10.1007/s00294-003-0436-x. Epub 2003 Aug 19. Curr Genet. 2003. PMID: 12928752 Review.
Cited by
-
Single-Color Fluorescence Lifetime Cross-Correlation Spectroscopy In Vivo.Biophys J. 2020 Oct 6;119(7):1359-1370. doi: 10.1016/j.bpj.2020.06.039. Epub 2020 Aug 20. Biophys J. 2020. PMID: 32919495 Free PMC article.
-
Synchronization of Saccharomyces cerevisiae Cells for Analysis of Progression Through the Cell Cycle.Methods Mol Biol. 2022;2579:145-168. doi: 10.1007/978-1-0716-2736-5_12. Methods Mol Biol. 2022. PMID: 36045205
-
The transcription factor Swi4 is target for PKA regulation of cell size at the G1 to S transition in Saccharomyces cerevisiae.Cell Cycle. 2015 Aug 3;14(15):2429-38. doi: 10.1080/15384101.2015.1055997. Epub 2015 Jun 5. Cell Cycle. 2015. PMID: 26046481 Free PMC article.
-
Overlapping Role of Respiratory Supercomplex Factor Rcf2 and Its N-terminal Homolog Rcf3 in Saccharomyces cerevisiae.J Biol Chem. 2016 Nov 4;291(45):23769-23778. doi: 10.1074/jbc.M116.734665. Epub 2016 Sep 23. J Biol Chem. 2016. PMID: 27662906 Free PMC article.
-
The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p.Mol Biol Cell. 2012 Nov;23(22):4402-15. doi: 10.1091/mbc.E11-12-1015. Epub 2012 Sep 26. Mol Biol Cell. 2012. PMID: 23015758 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases