Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul;277(1):G167-74.
doi: 10.1152/ajpgi.1999.277.1.G167.

Ion transport across the normal and CF neonatal murine intestine

Affiliations

Ion transport across the normal and CF neonatal murine intestine

B R Grubb. Am J Physiol. 1999 Jul.

Abstract

Neonatal mice with cystic fibrosis (CF) exhibit a very high mortality due to intestinal obstruction localized primarily to the ileum and colon. It has been hypothesized that lack of Cl(-) secretion and possibly elevated Na(+) absorption contribute to the gut problems in CF neonates. Therefore, intestines (ileum, proximal colon, and distal colon) from normal and CF day-old mouse pups were studied on ultra-small-aperture (0.0135 cm(2)) Ussing chambers. All three regions of the normal neonatal intestine responded to forskolin with an increase in short-circuit current, which was completely absent in the CF intestine. The neonatal distal colon exhibited a high rate of amiloride-sensitive electrogenic Na(+) absorption, which did not differ between the normal and CF preparations. The ileum and proximal colon of both genotypes exhibited a small but significant electrogenic Na(+) absorption. The neonatal proximal colon and ileum also exhibited electrogenic Na(+)-glucose cotransport, which was significantly greater in the normal compared with the CF ileum. In addition, all three intestinal regions exhibited electrogenic Na(+)-alanine cotransport, which was significantly reduced in two of the regions of the CF neonatal intestine. It is speculated that: 1) the reduced rate of Na(+)-nutrient cotransport in the CF intestine contributes to the lower rate of growth in CF pups, whereas 2) the elevated electrogenic Na(+) absorption in the neonatal intestine, coupled with an inability to secrete Cl(-), contributes to the intestinal obstruction in the CF pups.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources