Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Jul 23;274(30):21387-94.
doi: 10.1074/jbc.274.30.21387.

A comparison of eubacterial and archaeal structure-specific 5'-exonucleases

Affiliations
Free article
Comparative Study

A comparison of eubacterial and archaeal structure-specific 5'-exonucleases

M W Kaiser et al. J Biol Chem. .
Free article

Abstract

The 5'-exonuclease domains of the DNA polymerase I proteins of Eubacteria and the FEN1 proteins of Eukarya and Archaea are members of a family of structure-specific 5'-exonucleases with similar function but limited sequence similarity. Their physiological role is to remove the displaced 5' strands created by DNA polymerase during displacement synthesis, thereby creating a substrate for DNA ligase. In this paper, we define the substrate requirements for the 5'-exonuclease enzymes from Thermus aquaticus, Thermus thermophilus, Archaeoglobus fulgidus, Pyrococcus furiosus, Methanococcus jannaschii, and Methanobacterium thermoautotrophicum. The optimal substrate of these enzymes resembles DNA undergoing strand displacement synthesis and consists of a bifurcated downstream duplex with a directly abutted upstream duplex that overlaps the downstream duplex by one base pair. That single base of overlap causes the enzymes to leave a nick after cleavage and to cleave several orders of magnitude faster than a substrate that lacks overlap. The downstream duplex needs to be 10 base pairs long or greater for most of the enzymes to cut efficiently. The upstream duplex needs to be only 2 or 3 base pairs long for most enzymes, and there appears to be interaction with the last base of the primer strand. Overall, the enzymes display very similar substrate specificities, despite their limited level of sequence similarity.

PubMed Disclaimer

Publication types

LinkOut - more resources