Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;290(2):753-60.

Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands

Affiliations
  • PMID: 10411588

Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands

B Al-Ani et al. J Pharmacol Exp Ther. 1999 Aug.

Abstract

A cloned rat proteinase-activated receptor (PAR)(2)-expressing cell line (KNRK-rPAR(2)) was used to study the structure-activity relationships (elevated intracellular Ca(2+)) for a series of: 1) PAR(1)-derived receptor-activating ligands (PAR(1)-APs) [SFLLR (P5), SFLLR-NH(2) (P5-NH(2)), SFLLRNP (P7), SFLLRNP-NH(2) (P7-NH(2)), and TFLLR-NH(2) (TF-NH(2))] and 2) PAR(2)-derived-activating-peptides (PAR(2)-APs) [SLIGRL-NH(2) (SL-NH(2)), SLIGR-NH(2) (GR-NH(2)), and SLIGKV-NH(2) (KV-NH(2))]. The activities of the PAR-APs were compared with the PAR(2)-AP analog trans-cinnamoyl-Leu-Ile-Gly-Arg-Leu-Orn-NH(2) tc-NH(2)), which as a [(3)H]propionyl derivative ([(3)H]propionyl-tc-NH(2)) was used to develop a radioligand-binding assay for PAR(2). The relative potencies of the PAR-APs in the Ca(2+)-signaling assay were tc-NH(2) = SL-NH(2) > KV-NH(2) congruent with P5-NH(2) > GR-NH(2) > P7-NH(2) > P7 > P5 > TF-NH(2). The reverse sequence PAR-APs, LSIGRL-NH(2) (LS-NH(2)), LRGILS-NH(2) (LR-NH(2)), FSLLRY-NH(2) (FSY-NH(2)), and FSLLR-NH(2) (FS-NH(2)), as well as the Xenopus PAR(1)-AP TFRIFD-NH(2), were inactive. The relative biological potencies of the peptides were in accord with their ability to compete for the binding of [(3)H]propionyl-tc-NH(2) (tc-NH(2) = SL-NH(2) > GR-NH(2) congruent with P5-NH(2) > P5) to KNRK-rPAR(2) cells, whereas inactive peptides (FS-NH(2); LR-NH(2)) showed no appreciable binding competition. Our data therefore validate a ligand-binding assay for the use in studies of PAR(2) and indicate that the relative biological potencies of the PAR(1)-APs for activating rat PAR(2) parallel their ability to activate human PAR(1). The relative receptor-binding activities of the PAR-APs, although in general agreement with their relative biological activities, point to differences in the intrinsic receptor-activating activities between the several PAR-APs. The binding assay we have developed should prove of use for the further study of PAR(2)-ligand interactions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources