Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul 9;98(1):13-23.
doi: 10.1016/S0092-8674(00)80602-9.

Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice

Affiliations
Free article

Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice

J Weng et al. Cell. .
Free article

Abstract

Rim protein (RmP) is an ABC transporter of unknown function in rod outer segment discs. The human gene for RmP (ABCR) is affected in several recessive retinal degenerations. Here, we characterize the ocular phenotype in abcr knockout mice. Mice lacking RmP show delayed dark adaptation, increased all-trans-retinaldehyde (all-trans-RAL) following light exposure, elevated phosphatidylethanolamine (PE) in outer segments, accumulation of the protonated Schiff base complex of all-trans-RAL and PE (N-retinylidene-PE), and striking deposition of a major lipofuscin fluorophore (A2-E) in retinal pigment epithelium (RPE). These data suggest that RmP functions as an outwardly directed flippase for N-retinylidene-PE. Delayed dark adaptation is likely due to accumulation in discs of the noncovalent complex between opsin and all-trans-RAL. Finally, ABCR-mediated retinal degeneration may result from "poisoning" of the RPE due to A2-E accumulation, with secondary photoreceptor degeneration due to loss of the RPE support role.

PubMed Disclaimer

Publication types

MeSH terms