Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun 25;101(1-2):81-94.
doi: 10.1016/s0166-6851(99)00060-2.

Transcription of 'inactive' expression sites in African trypanosomes leads to expression of multiple transferrin receptor RNAs in bloodstream forms

Affiliations

Transcription of 'inactive' expression sites in African trypanosomes leads to expression of multiple transferrin receptor RNAs in bloodstream forms

I Ansorge et al. Mol Biochem Parasitol. .

Abstract

African trypanosomes express a heterodimeric transferrin receptor that mediates iron uptake from the host bloodstream. The genes encoding the receptor, ESAG6 and ESAG7, are found at the beginning of VSG expression sites: these are telomeric, polycistronic transcription units that each terminate with a gene encoding a trypanosome variant surface glycoprotein, VSG. Approximately 20 of these VSG expression sites are found in the trypanosome genome, but only one VSG is expressed at a time. The conventional view is that one expression site promoter is extremely active whereas the others are either inactive or show very low, poorly processive activity, and that all transferrin receptor molecules are encoded by the active expression site. The 3'-end of the ESAG6 gene is more than 5 kb from the promoter. We show here that 20% of ESAG6 mRNA originates from the 'inactive' expression sites. We suggest that many expression site promoters in trypanosomes show low-level activity throughout the life cycle, and that transcription proceeds for at least 5 kb. This suggests a simplified model of VSG expression site control, whereby the only regulated event is the strong activation of a single expression site promoter in bloodstream forms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources