Voltage-dependent calcium channel mutations in neurological disease
- PMID: 10414295
- DOI: 10.1111/j.1749-6632.1999.tb11287.x
Voltage-dependent calcium channel mutations in neurological disease
Abstract
Calcium ion channel mutations disrupt channel function and create recognizable disease phenotypes in the nervous system. The broad array of underlying cellular alterations is commensurate with the expanding genetic diversity of the voltage-gated calcium ion channel complex and its critical role in regulating cell function. Currently, 16 calcium channel genes are known, and mutations in 7 of these are associated with distinct inherited neurological disorders. These mutations provide new insight into the structure and function of the channels, and link specific subunits to cellular disease processes, including altered excitability, synaptic signaling, and cell death. Studies of mutant channel behavior, subunit interactions, and the differentiation of neural networks demonstrate unique patterns of downstream rearrangement. Developmental analysis of molecular plasticity in these mutants is a critical step to define the intervening mechanisms that translate aberrant ion channel behavior into the diverse clinical phenotypes observed.
Similar articles
-
Ion channel mutations in mouse models of inherited neurological disease.Ann Med. 1997 Dec;29(6):569-74. doi: 10.3109/07853899709007484. Ann Med. 1997. PMID: 9562526 Review.
-
Single gene defects in mice: the role of voltage-dependent calcium channels in absence models.Epilepsy Res. 1999 Sep;36(2-3):111-22. doi: 10.1016/s0920-1211(99)00045-5. Epilepsy Res. 1999. PMID: 10515159 Review.
-
Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS.Nat Rev Neurol. 2012 Jan 17;8(2):86-96. doi: 10.1038/nrneurol.2011.228. Nat Rev Neurol. 2012. PMID: 22249839 Review.
-
[Genetic diversity of voltage-gated calcium channels].Rev Neurol (Paris). 2004 May;160(5 Pt 2):S7-15. doi: 10.1016/s0035-3787(04)71000-0. Rev Neurol (Paris). 2004. PMID: 15269655 Review. French.
-
[Cerebellar ataxia and absence epilepsy: genes, channels, neurons and mice].Rev Neurol. 2003 Sep 1-15;37(5):447-53. Rev Neurol. 2003. PMID: 14533095 Review. Spanish.
Cited by
-
Presynaptic Ca(2+) influx at a mouse central synapse with Ca(2+) channel subunit mutations.J Neurosci. 2000 Jan 1;20(1):163-70. doi: 10.1523/JNEUROSCI.20-01-00163.2000. J Neurosci. 2000. PMID: 10627593 Free PMC article.
-
The role of T-type calcium channel genes in absence seizures.Front Neurol. 2014 May 9;5:45. doi: 10.3389/fneur.2014.00045. eCollection 2014. Front Neurol. 2014. PMID: 24847307 Free PMC article. Review.
-
Enhanced G protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel-mutant mouse, tottering.J Physiol. 2003 Mar 1;547(Pt 2):497-507. doi: 10.1113/jphysiol.2002.033415. Epub 2003 Jan 24. J Physiol. 2003. PMID: 12562906 Free PMC article.
-
Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid.Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13501-6. doi: 10.1073/pnas.0704391104. Epub 2007 Aug 3. Proc Natl Acad Sci U S A. 2007. PMID: 17675408 Free PMC article.
-
Disruption of polycystin-L causes hippocampal and thalamocortical hyperexcitability.Hum Mol Genet. 2016 Feb 1;25(3):448-58. doi: 10.1093/hmg/ddv484. Epub 2015 Nov 26. Hum Mol Genet. 2016. PMID: 26612203 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources