Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug 1;212(1):182-90.
doi: 10.1006/dbio.1999.9352.

Fingerprinting of adenylyl cyclase activities during Dictyostelium development indicates a dominant role for adenylyl cyclase B in terminal differentiation

Affiliations
Free article

Fingerprinting of adenylyl cyclase activities during Dictyostelium development indicates a dominant role for adenylyl cyclase B in terminal differentiation

M E Meima et al. Dev Biol. .
Free article

Abstract

Activation of cAMP-dependent protein kinase (PKA) triggers terminal differentiation in Dictyostelium, without an obvious requirement for the G-protein-coupled adenylyl cyclase, ACA, or the osmosensory adenylyl cyclase, ACG. A third adenylyl cyclase, ACB, was recently detected in rapidly developing mutants. The specific characteristics of ACA, ACG, and ACB were used to determine their respective activities during development of wild-type cells. ACA was highly active during aggregation, with negligible activity in the slug stage. ACG activity was not present at significant levels until mature spores had formed. ACB activity increased strongly after slugs had formed with optimal activity at early fruiting body formation. The same high activity was observed in slugs of ACG null mutants and ACA null mutants that overexpress PKA (acaA/PKA), indicating that it was not due to either ACA or ACG. The detection of high adenylyl cyclase activity in acaA/PKA null mutants contradicts earlier conclusions (B. Wang and A. Kuspa, Science 277, 251-254, 1997) that these mutants can develop into fruiting bodies in the complete absence of cAMP. In contrast to slugs of null mutants for the intracellular cAMP-phosphodiesterase REGA, where both intact cells and lysates show ACB activity, wild-type slugs only show activity in lysates. This indicates that cAMP accumulation by ACB in living cells is controlled by REGA. Both REGA inhibition and PKA overexpression cause precocious terminal differentiation. The developmental regulation of ACB and its relationship to REGA suggest that ACB activates PKA and induces terminal differentiation.

PubMed Disclaimer

LinkOut - more resources