Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;117(2):420-8.
doi: 10.1053/gast.1999.0029900420.

Vasoactive intestinal polypeptide is a potent regulator of bile secretion from rat cholangiocytes

Affiliations

Vasoactive intestinal polypeptide is a potent regulator of bile secretion from rat cholangiocytes

W K Cho et al. Gastroenterology. 1999 Aug.

Abstract

Background & aims: Vasoactive intestinal polypeptide (VIP) is a neuropeptide with diverse biological functions including stimulatory effects on bile secretion. The effects of VIP on bile secretion and its site of action were examined.

Methods: Choleretic effects of VIP were examined using isolated perfused livers, hepatocyte couplets, isolated bile duct units, and cholangiocytes from rat liver.

Results: VIP (100 nmol/L) produced a small increase in bile flow and bile salt output in taurocholate-supplemented isolated perfused livers but had no significant effect on bile flow in the absence of bile salt supplements or on fluid secretion in isolated hepatocyte couplets. In addition, VIP significantly increased bile pH, bicarbonate concentration, and output in the isolated perfused livers from both normal and 2 week bile duct-ligated rats, although bile flow increased only in the bile duct-ligated model. VIP also produced a dose-dependent increase in fluid secretion in isolated bile duct units, which was inhibited significantly by VIP antagonist, a specific VIP receptor inhibitor. This VIP-stimulated secretory response in isolated bile duct units was more potent than those produced by bombesin or secretin. Neither somatostatin nor substance P inhibited the VIP response in isolated bile duct units. In contrast to secretin, VIP had no significant effect on adenosine 3', 5'-cyclic monophosphate (cAMP) levels in isolated cholangiocytes.

Conclusions: VIP is a potent stimulant of fluid and bicarbonate secretion from cholangiocytes via cAMP-independent pathways, suggesting that this neuropeptide plays a major regulatory role in biliary transport and secretion.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources