Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;6(8):493-505.
doi: 10.1016/S1074-5521(99)80082-9.

The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases

Affiliations

The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases

T Stachelhaus et al. Chem Biol. 1999 Aug.

Abstract

Background: Many pharmacologically important peptides are synthesized nonribosomally by multimodular peptide synthetases (NRPSs). These enzyme templates consist of iterated modules that, in their number and organization, determine the primary structure of the corresponding peptide products. At the core of each module is an adenylation domain that recognizes the cognate substrate and activates it as its aminoacyl adenylate. Recently, the crystal structure of the phenylalanine-activating adenylation domain PheA was solved with phenylalanine and AMP, illustrating the structural basis for substrate recognition.

Results: By comparing the residues that line the phenylalanine-binding pocket in PheA with the corresponding moieties in other adenylation domains, general rules for deducing substrate specificity were developed. We tested these in silico 'rules' by mutating specificity-conferring residues within PheA. The substrate specificity of most mutants was altered or relaxed. Generalization of the selectivity determinants also allowed the targeted specificity switch of an aspartate-activating adenylation domain, the crystal structure of which has not yet been solved, by introducing a single mutation.

Conclusions: In silico studies and structure-function mutagenesis have defined general rules for the structural basis of substrate recognition in adenylation domains of NRPSs. These rules can be used to rationally alter the specificity of adenylation domains and to predict from the primary sequence the specificity of biochemically uncharacterized adenylation domains. Such efforts could enhance the structural diversity of peptide antibiotics such as penicillins, cyclosporins and vancomycins by allowing synthesis of 'unnatural' natural products.

PubMed Disclaimer

Publication types

LinkOut - more resources