Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 May;16(3):203-21.
doi: 10.1016/s0891-0618(98)00067-2.

Astroglial modulation of neurotransmitter/peptide release from the neurohypophysis: present status

Affiliations
Review

Astroglial modulation of neurotransmitter/peptide release from the neurohypophysis: present status

G I Hatton. J Chem Neuroanat. 1999 May.

Abstract

Reviewed in this article are those studies that have contributed heavily to our current conceptualizations of glial participation in the functioning of the magnocellular hypothalamo-neurohypophysial system. This system undergoes remarkable morphological and functional reorganization induced by increased demand for peptide synthesis and release, and this reorganization involves the astrocytic elements in primary roles. Under basal conditions, these glia appear to be vested with the responsibility of controlling the neuronal microenvironment in ways that reduce neuronal excitability, restrict access to neuronal membranes by neuroactive substances and deter neuron neuron interactions within the system. With physiological activation, the glial elements, via receptor-mediated mechanisms, take up new positions. This permissively facilitates neuron neuron interactions such as the exposure of neuronal membranes to released peptides and the formation of gap junctions and new synapses, enhances and prolongs the actions of those excitatory neurotransmitters for which there are glial uptake mechanisms, and facilitates the entry of peptides into the blood. In addition, subpopulations of these glia either newly synthesize or increase synthesis of neuroactive peptides for which their neuronal neighbors have receptors. Release of these peptides by the glia or their functional roles in the system have not yet been demonstrated.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources