Apoptosis of sinusoidal endothelial cells occurs during liver preservation injury by a caspase-dependent mechanism
- PMID: 10428274
- DOI: 10.1097/00007890-199907150-00018
Apoptosis of sinusoidal endothelial cells occurs during liver preservation injury by a caspase-dependent mechanism
Abstract
Background: Cold ischemia/warm reperfusion (CI/WR) liver injury remains a problem in liver transplants. Sinusoidal endothelial cells (SEC) are a target of CI/WR injury, during which they undergo apoptosis. Because caspase proteases have been implicated in apoptosis, our aim was to determine whether liver CI/WR injury induces a caspase-dependent apoptosis of SEC.
Methods: Rat livers were stored in the University of Wisconsin (UW) solution for 24 hr at 4 degrees C and reperfused for 1 hr at 37 degrees C in vitro. Apoptosis was quantitated using the TUNEL assay, and caspase 3 activation determined by immunohistochemical analysis. Rat liver orthotopic liver transplants (OLT) were also performed using livers stored for 30 hr.
Results: Terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) positive hepatocytes were rare and did not increase during CI/WR injury. In contrast, TUNEL positive SEC increased 6-fold after reperfusion of livers stored under cold ischemic conditions, compared with controls or livers stored but not reperfused. Immunohistochemical analysis demonstrated active caspase 3 only in endothelial cells after CI/WR injury. When IDN-1965, a caspase inhibitor, was given i.v. to the donor animal and added to UW solution and the reperfusion media, TUNEL positive endothelial cells were reduced 63+/-11% (P<0.05). Similarly, the duration of survival after OLT was significantly increased in the presence of the inhibitor.
Conclusion: During liver CI/WR injury: 1) selective apoptosis of endothelial cells occurs; 2) caspase 3 is activated only in endothelial cells; and 3) a caspase inhibitor reduces endothelial cell apoptosis and prolongs animal survival after OLT. The pharmacologic use of caspase inhibitors could prove useful in clinical transplantation.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials