Membrane insertion kinetics of a protein domain in vivo. The bacterioopsin n terminus inserts co-translationally
- PMID: 10428851
- DOI: 10.1074/jbc.274.32.22693
Membrane insertion kinetics of a protein domain in vivo. The bacterioopsin n terminus inserts co-translationally
Abstract
The pathway by which segments of a polytopic membrane protein are inserted into the membrane has not been resolved in vivo. We have developed an in vivo kinetic assay to examine the insertion pathway of the polytopic protein bacterioopsin, the apoprotein of Halobacterium salinarum bacteriorhodopsin. Strains were constructed that express the bacteriorhodopsin mutants I4C:H(6) and T5C:H(6), which carry a unique Cys in the N-terminal extracellular domain and a polyhistidine tag at the C terminus. Translocation of the N-terminal domain was detected using a membrane-impermeant gel shift reagent to derivatize the Cys residue of nascent radiolabeled molecules. Derivatization was assessed by gel electrophoresis of the fully elongated radiolabeled population. The time required to translocate and fully derivatize the Cys residues of I4C:H(6) and T5C:H(6) is 46 +/- 9 and 61 +/- 6 s, respectively. This is significantly shorter than the elongation times of the proteins, which are 114 +/- 26 and 169 +/- 16 s, respectively. These results establish that translocation of the bacterioopsin N terminus and insertion of the first transmembrane segment occur co-translationally and confirm the use of the assay to monitor the kinetics of polytopic membrane protein insertion in vivo.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
