Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;45(4):453-65.

Acetaldehyde depresses myocardial contraction and cardiac myocyte shortening in spontaneously hypertensive rats: role of intracellular Ca2+

Affiliations
  • PMID: 10432192

Acetaldehyde depresses myocardial contraction and cardiac myocyte shortening in spontaneously hypertensive rats: role of intracellular Ca2+

R A Brown et al. Cell Mol Biol (Noisy-le-grand). 1999 Jun.

Abstract

Acetaldehyde (ACA), the major metabolite of ethanol, exerts both stimulatory and depressive actions on myocardial tissue. We have recently shown that ACA depresses myocardial contraction, cardiac myocyte shortening and intracellular Ca2+ transients in normal rat heart. The purpose of the present study was to determine the influence of hypertension on ACA-induced myocardial actions. Mechanical properties of left ventricular papillary muscles and ventricular myocytes isolated from both 25-week-old normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were evaluated using force-transducer and video edge-detection, respectively. Papillary muscles and cardiac myocytes were electrically stimulated to contract at 0.5 Hz. Contractile properties analyzed include: peak tension development (PTD), peak twitch amplitude (PTA), time-to-PTD/PTA (TPT/TPS), time-to-90% relaxation/relengthening (RT90/TR90) and maximal velocities of contraction/shortening and relaxation/relengthening (+/-VT/+/-dL/dt). Intracellular Ca2+ transients were measured as fura-2 fluorescence intensity (FFI) changes. ACA (1-30 mM) depressed PTD without affecting other mechanical indices in both WKY and SHR myocardium, with maximal inhibition of 64 and 69%, respectively. SHR myocytes exhibited increased cell dimension, baseline PTA and resting intracellular Ca2+ levels, compared to WKY counterparts. ACA (0.03-30 mM) depressed PTA without affecting TPT, TR90 and +/-dL/dt. The maximal inhibitions were 31 and 36% in WKY and SHR groups, respectively. Interestingly, ACA exerted a biphasic effect on FFI, displaying potentiation at lower doses (<3 mM) and inhibition at higher doses (>3 mM). The maximal increase in FFI changes were 19 and 22% at 0.3 mM and the maximal decreases were 37 and 29% at 30 mM ACA, in WKY and SHR myocytes, respectively. Neither resting intracellular Ca2+ levels (FFI) nor fluorescence decay time (FDT) were affected by ACA. The increase in FFI was attenuated by propranolol (1 microM), whereas the decrease in FFI was reversed by BayK 8644 (1 microM). These results suggest that hypertension does not appear to alter ACA-induced myocardial depression. The mechanism underlying ACA-induced myocardial actions may involve increased beta-adrenergic activity at low doses and reduced Ca2+ entry and/or release at high doses.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources