Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1999 Aug;21(2):218-28.
doi: 10.1016/S0893-133X(99)00023-8.

Effect of methylphenidate on attention in children with attention deficit hyperactivity disorder (ADHD): ERP evidence

Affiliations
Free article
Clinical Trial

Effect of methylphenidate on attention in children with attention deficit hyperactivity disorder (ADHD): ERP evidence

G A Sunohara et al. Neuropsychopharmacology. 1999 Aug.
Free article

Abstract

Methylphenidate is the most common treatment for attention deficit hyperactivity disorder (ADHD) and has been shown to improve attention and behaviour. However, the precise nature of methylphenidate on specific aspects of attention at different dose levels remains unclear. We studied methylphenidate effects in ADHD from a neurophysiological perspective, recording event-related potentials (ERPs) during attention task performance in normal controls and children with ADHD under different dose conditions. Twenty children with ADHD and 20 age matched controls were assessed with a continuous performance task requiring subjects to identify repeating alphabetic characters. ERPs and behavioural measures were recorded and analyzed for trials where a correct response was made. The ADHD group was assessed off drug (baseline) and on placebo, low (0.28 mg/kg) and high (0.56 mg/kg) dose levels of methylphenidate. The results showed that the ADHD group at baseline was more impulsive and inattentive than controls and had shorter P2 and N2 latencies and longer P3 latencies. Low dose methylphenidate was associated with reduced impulsivity (fewer false alarms) and decreased P3 latencies, whereas the higher dose level was associated with reduced impulsivity and less inattention (more hits), as well as increased P2 and N2 latencies and decreased P3 latencies. Amplitudes were unaffected and there were no adverse effects of the higher dose for any of the children. These results suggest differential dosage effects and a dissociation between dose levels and aspects of processing.

PubMed Disclaimer

Publication types

LinkOut - more resources