Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;30(2):325-33.
doi: 10.1016/s0741-5214(99)70144-8.

Anastomotic tissue response associated with expanded polytetrafluoroethylene access grafts constructed by using nonpenetrating clips

Affiliations
Free article

Anastomotic tissue response associated with expanded polytetrafluoroethylene access grafts constructed by using nonpenetrating clips

D B Dal Ponte et al. J Vasc Surg. 1999 Aug.
Free article

Abstract

Purpose: The gross, light microscopic, and scanning microscopic appearance of arterial and venous anastomoses in expanded polytetrafluoroethylene (ePTFE) access grafts constructed with nonpenetrating clips were compared with that of those constructed with polypropylene suture. We hypothesized that clip-constructed anastomoses would provide controlled approximation of native vessel intimal and medial components with the ePTFE grafts. We further hypothesized that anastomotic healing with clips would involve primarily an intimal cellular response, as compared with suture-constructed anastomoses in which cells within the media and adventitia walls participate.

Methods: Femoral artery to femoral vein arteriovenous (AV) grafts were constructed in five dogs using 4-mm internal diameter ePTFE graft material. Each animal received one AV graft with anastomoses constructed by using polypropylene sutures in one leg and one AV graft with anastomoses constructed with Vascular Closure System clips in the contralateral leg. Animals were given aspirin for the duration of the study, and grafts were explanted at 5 weeks. At the time of explantation, graft segments were grossly evaluated and then underwent light and scanning electron microscopic analysis.

Results: At the time of explantation, all access grafts were patent. Joining the ePTFE grafts to the native vessels with clips resulted in minimal vessel wall damage. The lumenal contours of the discontinuous approximation were smooth and without gross endothelial disruption. These observations are in contrast to the lumenal compromise and endothelial disturbance associated with the sutured anastomoses. Furthermore, hemostasis was achieved immediately in the clipped grafts, decreasing the incidence of perianastomic hematoma. Finally, cellular reconstitution occurred at the anastomotic cleft in both the sutured and the clipped junctions. The neointima exhibited an endothelial cell lining on the lumenal surface and the presence of alpha-smooth muscle cell actin positive cells within the subendothelial layer.

Conclusion: Vascular Closure System clips are a viable alternative to suture for the approximation of ePTFE AV access grafts to native blood vessels. The use of the clips resulted in a more streamlined anastomosis, with decreased vessel wall damage, immediate hemostasis, and a trend toward shorter procedure times.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources