Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug 13;274(33):23549-57.
doi: 10.1074/jbc.274.33.23549.

The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation

Affiliations
Free article

The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation

C Bachmann et al. J Biol Chem. .
Free article

Abstract

Vasodilator-stimulated phosphoprotein (VASP) is a member of the Ena/VASP family of proteins that are implicated in regulation of the actin cytoskeleton. All family members share a tripartite structural organization, comprising an N-terminal Ena/VASP homology (EVH) 1 domain, a more divergent proline-rich central part, and a common C-terminal EVH2 region of about 160-190 amino acids. Using chemical cross-linking, sucrose gradient sedimentation, and gel filtration analyses of different truncated VASP constructs, we demonstrate that the VASP EVH2 region is both necessary and sufficient for tetramerization. Moreover, co-sedimentation and fluorescent phalloidin staining showed that the EVH2 region binds and bundles F-actin in vitro and localizes to stress fibers in transfected cells. Analysis of the functional contribution of highly conserved blocks within this region indicated that residues 259-276 of human VASP are essential for the interaction with F-actin, whereas residues 343-380 are required for tetramerization, probably via coiled-coil formation. Interactions with F-actin are enhanced by VASP tetramerization. The results demonstrate that the C-terminal EVH2 segment is not only conserved in sequence but also forms a distinct functional entity. The data suggest that the EVH2 segment represents a novel oligomerization and F-actin binding domain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources