Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;78(8):1469-76.
doi: 10.1177/00220345990780081301.

The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins

Affiliations

The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins

L G Lovell et al. J Dent Res. 1999 Aug.

Abstract

One of the most common combinations for the organic phase of dental restorative materials is BisGMA (2,2bis[4-(2-hydroxy-3-methacryloyloxypropoxy) phenyl]propane) and TEGDMA (triethylene glycol dimethacrylate). However, this copolymer has some drawbacks, such as volume shrinkage during cure and lack of complete double-bond conversion. If the properties of this system are to be improved, an attempt must be made to understand the underlying kinetics of the reaction. This work examines the effects of light intensity, temperature, and composition on the polymerization behavior of BisGMA/TEGDMA copolymerizations. Using differential scanning calorimetry, we monitored the rates of photopolymerization for various experimental conditions. The BisGMA/TEGDMA copolymerization behaved similarly to other dimethacrylate systems and exhibited diffusion-controlled kinetics. It was found that the maximum rate of polymerization was significantly affected by the intensity of the light, and the temperature of the polymerization affected the conversion at which the maximum rate occurred. When the composition of the mixture was varied, it was discovered that the viscosity of the system played a significant role in the polymerization rate and the onset of reaction-diffusion-controlled termination. Mixtures which contained from 50 wt% to 75 wt% BisGMA displayed the highest maximum rate. This feature suggests that TEGDMA is an excellent diluent, since it increases the mobility of the reacting medium; however, the high reactivity is due to the presence of BisGMA. Therefore, based on compositional dependence, we conclude that the BisGMA portion of the mixture largely controls the polymerization mechanisms and kinetics.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources