Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;89(2):484-9.
doi: 10.1097/00000539-199908000-00045.

Methylene blue, a soluble guanylyl cyclase inhibitor, reduces the sevoflurane minimum alveolar anesthetic concentration and decreases the brain cyclic guanosine monophosphate content in rats

Affiliations

Methylene blue, a soluble guanylyl cyclase inhibitor, reduces the sevoflurane minimum alveolar anesthetic concentration and decreases the brain cyclic guanosine monophosphate content in rats

E Masaki et al. Anesth Analg. 1999 Aug.

Abstract

The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signal pathway plays an important role in anesthetic and analgesic effects. We sought to determine the involvement of inhibition of soluble guanylyl cyclase (sGC) in the anesthetic mechanism and site of action of volatile anesthetics. We examined the effect of intracerebroventricular (ICV) administration of methylene blue (MB), a sGC inhibitor, on the minimum alveolar anesthetic concentration (MAC) of sevoflurane and the brain cGMP content in rats in vivo. We also investigated the effect of sevoflurane on NO-stimulated sGC activity in vitro. The rats were divided into three groups. After the ICV administration of MB, sevoflurane MAC and brain cGMP contents were measured in the first group and the second group, respectively. In the third group, brain cGMP contents were determined after sevoflurane anesthesia without the ICV administration of MB to examine the direct effect of sevoflurane on brain cGMP contents. MB significantly decreased sevoflurane MAC and brain cGMP content in a dose-dependent manner. Sevoflurane itself also dose-dependently decreased cGMP contents in brain in vivo and inhibited the NO-stimulated sGC activity in vitro. These results suggest that the inhibition of the NO-cGMP signal pathway at the sGC level could be involved in anesthetic or analgesic effects, and the inhibitory effect of sevoflurane on sGC would be one of the sites of action of this anesthetic.

Implications: Because the nitric oxide-cyclic guanosine monophosphate signal pathway mediates nociception and the site of action of halogenated volatile anesthetics in uncertain, we examined the possible involvement of inhibition of soluble guanylyl cyclase in the anesthetic mechanism. The inhibitory effect of sevoflurane on soluble guanylyl cyclase could be one of sites of this anesthetic.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources