Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Jun 28;79(3):187-92.
doi: 10.1016/s0301-4622(99)00054-x.

Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli

Affiliations
Comparative Study

Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli

M Iwamoto et al. Biophys Chem. .

Abstract

Phoborhodopsin (also called sensory rhodopsin II, sR-II) is a receptor for the negative phototaxis of Halobacterium salinarum (pR), and pharaonis phoborhodopsin (ppR) is the corresponding receptor of Natronobacterium pharaonis. pR and ppR are retinoid proteins and have a photocycle similar to that of bacteriorhodopsin (bR). A major difference between the photocycle of the ion pump bR and the sensor pR or ppR is found in their turnover rates which are much faster for bR. A reason for this difference might be found in the lack of a proton-donating residue to the Schiff base which is formed between the lysine of the opsin and retinal. To reconstruct a bR-like photochemical behavior, we expressed ppR mutants in Escherichia coli in which proton-donating groups have been reintroduced into the cytoplasmic proton channel. In measurement of the photocycle it could be shown that the F86D mutant of ppR (Phe86 was substituted by Asp) showed a faster decay of M-intermediate than the wild-type, which was even accelerated in the F86D/L40T double mutant.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources