Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;277(2):C330-42.
doi: 10.1152/ajpcell.1999.277.2.C330.

Glucocorticoids regulate transendothelial fluid flow resistance and formation of intercellular junctions

Affiliations

Glucocorticoids regulate transendothelial fluid flow resistance and formation of intercellular junctions

J L Underwood et al. Am J Physiol. 1999 Aug.

Abstract

The regulation of transendothelial fluid flow by glucocorticoids was studied in vitro with use of human endothelial cells cultured from Schlemm's canal (SCE) and the trabecular meshwork (TM) in conjunction with computer-linked flowmeters. After 2-7 wk of 500 nM dexamethasone (Dex) treatment, the following physiological, morphometric, and biochemical alterations were observed: a 3- to 5-fold increase in fluid flow resistance, a 2-fold increase in the representation of tight junctions, a 10- to 30-fold reduction in the mean area occupied by interendothelial "gaps" or preferential flow channels, and a 3- to 5-fold increase in the expression of the junction-associated protein ZO-1. The more resistive SCE cells expressed two isoforms of ZO-1; TM cells expressed only one. To investigate the role of ZO-1 in the aforementioned Dex effects, its expression was inhibited using antisense phosphorothioate oligonucleotides, and the response was compared with that observed with the use of sense and nonsense phosphorothioate oligonucleotides. Inhibition of ZO-1 expression abolished the Dex-induced increase in resistance and the accompanying alterations in cell junctions and gaps. These results support the hypothesis that intercellular junctions are necessary for the development and maintenance of transendothelial flow resistance in cultured SCE and TM cells and are likely involved in the mechanism of increased resistance associated with glucocorticoid exposure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources