Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1999 Aug;277(2):E370-9.
doi: 10.1152/ajpendo.1999.277.2.E370.

Low-dose T(3) improves the bed rest model of simulated weightlessness in men and women

Affiliations
Clinical Trial

Low-dose T(3) improves the bed rest model of simulated weightlessness in men and women

J C Lovejoy et al. Am J Physiol. 1999 Aug.

Abstract

This study tested the hypothesis that low-dose 3,5, 3'-triiodothyronine (T(3)) administration during prolonged bed rest improves the ground-based model of spaceflight. Nine men (36.4 +/- 1. 3 yr) and five women (34.2 +/- 2.1 yr) were studied. After a 5-day inpatient baseline period, subjects were placed at total bed rest with 6 degrees head-down tilt for 28 days followed by 5-day recovery. Fifty micrograms per day of T(3) (n = 8) or placebo (n = 6) were given during bed rest. Serum T(3) concentrations increased twofold, whereas thyroid-stimulating hormone was suppressed in treated subjects. T(3)-treated subjects showed significantly greater negative nitrogen balance and lost more weight (P = 0.02) and lean mass (P < 0.0001) than placebo subjects. Protein breakdown (whole body [(13)C]leucine kinetics) increased 31% in the T(3) group but only 8% in the placebo group. T(3)-treated women experienced greater changes in leucine turnover than men, despite equivalent weight loss. Insulin sensitivity fell by 50% during bed rest in all subjects (P = 0.005), but growth hormone release and insulin release were largely unaffected. In conclusion, addition of low-dose T(3) to the bed rest model of muscle unloading improves the ground-based simulation of spaceflight and unmasks several important gender differences.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources