Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Aug;277(2):G262-7.
doi: 10.1152/ajpgi.1999.277.2.G262.

Lessons from genetically engineered animal models. II. Disorders of enteric neuronal development: insights from transgenic mice

Affiliations
Review

Lessons from genetically engineered animal models. II. Disorders of enteric neuronal development: insights from transgenic mice

M D Gershon. Am J Physiol. 1999 Aug.

Abstract

Understanding the development of congenital defects of the enteric nervous system, such as Hirschsprung's disease, was, until recently, an intractable problem. The analysis of transgenic mice, however, has now led to the discovery of a number of genetic abnormalities that give rise to aganglionic congenital megacolon or neuronal intestinal dysplasia. The identification of the responsible genes has enabled the developmental actions of their protein products to be investigated, which, in turn, has made it possible to determine the causes of aganglionoses. Two models of pathogenesis have emerged. One, associated with mutations in genes encoding endothelin-3 or its receptor, endothelin B, posits the premature differentiation of migrating neural crest-derived progenitors, causing the precursor pool to become depleted before the bowel has been fully colonized. The second, associated with mutations in genes encoding glial cell line-derived neurotrophic factor (GDNF), its preferred receptor GFRalpha1, or their signaling component, Ret, appears to deprive a GDNF-dependent common progenitor of adequate support and/or mitogenic drive. In both cases, the terminal bowel becomes aganglionic when the number of colonizing neuronal precursors is inadequate.

PubMed Disclaimer

Publication types

LinkOut - more resources