Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;277(2):H799-811.
doi: 10.1152/ajpheart.1999.277.2.H799.

Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex

Affiliations

Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex

U Lindauer et al. Am J Physiol. 1999 Aug.

Abstract

We investigated the role of nitric oxide (NO)/cGMP in the coupling of neuronal activation to regional cerebral blood flow (rCBF) in alpha-chloralose-anesthetized rats. Whisker deflection (60 s) increased rCBF by 18 +/- 3%. NO synthase (NOS) inhibition by N(omega)-nitro-L-arginine (L-NNA; topically) reduced the rCBF response to 9 +/- 4% and resting rCBF to 80 +/- 8%. NO donors [S-nitroso-N-acetylpenicillamine (SNAP; 50 microM), 3-morpholinosydnonimine (10 microM)] or 8-bromoguanosine 3', 5'-cyclic-monophosphate (8-BrcGMP; 100 microM)] restored resting rCBF and L-NNA-induced attenuation of the whisker response in the presence of L-NNA, whereas the NO-independent vasodilator papaverine (1 mM) had no effect on the whisker response. Basal cGMP levels were decreased to 35% by L-NNA and restored to 65% of control by subsequent SNAP superfusion. Inhibition of neuronal NOS by 7-nitroindazole (7-NI; 40 mg/kg ip) or soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 100 microM) significantly reduced resting rCBF to 86 +/- 8 and 92 +/- 10% and whisker rCBF response to 7 +/- 4 and 12 +/- 3%, respectively. ODQ reduced tissue cGMP to 54%. 8-BrcGMP restored the whisker response in the presence of 7-NI or ODQ. We conclude that NO, produced by neuronal NOS, is a modulator in the coupling of neuronal activation and rCBF in rat somatosensory cortex and that this effect is mainly mediated by cGMP. L-NNA-induced vasomotion was significantly reduced during increased neuronal activity and after restoration of basal NO levels, but not after restoration of cGMP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources